Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Res ; 252(Pt 1): 118869, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38580000

RESUMEN

Residents in areas with abandoned mines risk significant exposure to abundant heavy metals in the environment. However, current clinical indicators cannot fully reflect the health changes associated with abandoned mine exposure. The aim of this study was to identify biological changes in the residents of abandoned mine areas via proteomic analysis of their blood. Blood samples were collected from abandoned mine and control areas, and mass spectrometry was used for protein profiling. A total of 138 unique or common proteins that were differentially expressed in low-exposure abandoned mine area (LoAMA) or high-exposure abandoned mine area (HiAMA) compared to non-exposure control area (NEA) were analyzed, and identified 4 clusters based on functional similarity. Among the 10 proteins that showed specific change in LoAMA, 4 proteins(Apolipoprotein M, Apolipoprotein E, Apolipoprotein L1, and Cholesteryl ester transfer protein) were cluded in cluster 1(plasma lipoprotein remodeling), and linked to proteins that showed specific change in protein expression in HiAMA. Therefore, it is suggested that 4 proteins are changed at low exposure to an abandoned mine (or initial exposure), and then at high exposure, changes in various proteins involved in linked plasma lipoprotein remodeling are induced, which might triggered by the 4 proteins. Interestingly, in addition to plasma lipoprotein remodeling, proteins involved in other functional networks were changed in the high exposure group. These were all directly or indirectly linked to the 4 biomarkers(Apolipoprotein M, Apolipoprotein E, Apolipoprotein L1, and Cholesteryl ester transfer protein) that changed during low exposure. This suggests their potential utility in identifying areas impacted by abandoned mines. Especially, proteins involved in lipid metabolism and renal function-related diseases in individuals exposed to heavy metals in abandoned mine areas were correlated. Chronic kidney disease is predominantly instigated by cardiovascular disease and is commonly accompanied by dyslipidemia.

2.
Environ Pollut ; 345: 123512, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38341060

RESUMEN

Cadmium (Cd), a serious environmental contaminant, is associated with adverse health effects. However, the specific changes that the human body experiences in response to exposure to varying concentrations of cadmium remain unknown. The high levels of heavy metal contamination, especially Cd, in abandoned mines and smelter sites make them ideal locations to investigate the physiological manifestations of Cd exposure. This study found that individuals inhabiting abandoned mine and smelter areas had higher concentrations of Cd in their urine and blood compared to those living outside these areas (i.e., the controls). Furthermore, proteomic profiling of blood samples from all study groups was performed to identify proteomic biomarkers associated with chronic and severe Cd exposure. This analysis showed statistically significant correlations between urine Cd levels and sixteen proteins. Among these proteins, seven exhibited significantly altered expressions in samples from contaminated areas compared with those from control areas. Therefore, these proteins were selected as potential markers representing Cd-related protein alterations. Multiple reaction monitoring analysis was performed to validate the expression patterns of the proteins and four proteins were found to exhibit consistent trends. The findings show that Cd exposure significantly affects the expression of certain proteins in the human body. Understanding the underlying mechanisms and diseases associated with Cd-induced protein alterations can aid in the development of effective preventive and therapeutic strategies for individuals exposed to Cd-linked pollution.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Metales Pesados , Humanos , Cadmio/análisis , Proteómica , Metales Pesados/análisis , Contaminación Ambiental/análisis , Minería , Monitoreo del Ambiente , Exposición a Riesgos Ambientales/análisis
3.
Toxics ; 11(6)2023 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-37368619

RESUMEN

Soil contamination is associated with a high potential for health issues. This study aimed to investigate the bioaccumulation of heavy metals and its associated health impact among residents near a mining area. We performed environmental monitoring by analyzing lead (Pb), cadmium (Cd), and arsenic (As) levels in soil and rice samples, as well as biomonitoring by analyzing blood and urine samples from 58 residents living near the mine. Additionally, concentration trends were investigated among 26 participants in a 2013 study. The Cd and As levels in the soil samples and Cd levels in the rice samples exceeded the criteria for concern. The geometric mean blood Cd level (2.12 µg/L) was two times higher than that in the general population aged > 40 years. The blood Cd level showed decreasing trends from the previous measurements of 4.56-2.25 µg/L, but was still higher than that in the general population. The blood and urine Cd levels were higher in those with a low estimated glomerular filtration rate (eGFR) than in those with normal eGFR. In conclusion, heavy metals from mining areas can accumulate in soil and rice, adversely impacting human health. Continuous environmental monitoring and biomonitoring are required to ensure the safety of residents.

4.
Sci Rep ; 13(1): 2856, 2023 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-36806109

RESUMEN

Abandoned metal mines and refineries are considered environmentally vulnerable areas owing to high levels of exposure to heavy metals. This study examined the association between heavy metal exposure and renal function indicators. We studied a total of 298 participants, of which 74 and 68 resided in low- and high-exposure abandoned metal mine areas, respectively, with 121 in the refinery area and 35 in the control area. Blood and urine samples were collected from the participants to analyze the levels of blood lead, cadmium, and creatinine and urinary cadmium, NAG, and ß2-MG. The estimated glomerular filtration rate, which is calculated using the Chronic Kidney Disease Epidemiology Collaboration equation, was used for assessments. The study participants comprised more females than males, and their mean age was 70.3 years. The blood lead and cadmium as well as urinary cadmium levels were 2.12 µg/dL, 1.89 µg/L, and 2.11 µg/L, respectively, in the heavy metal-exposure areas, and 1.18 µg/dL, 0.89 µg/L, and 1.11 µg/L, respectively, in the control area. The odds ratio (OR) for exceeding the reference value showed that blood cadmium in the refinery area was 38 times higher than that in the control area. Urinary cadmium was seven times higher in the low-exposure abandoned metal mine area than in the control area. NAG showed a positive correlation with urinary cadmium in all areas. In the refinery area, correlations were observed between ß2-MG and urinary cadmium levels and the eGFR and blood cadmium level; in the high-exposure abandoned metal mine area, correlations were observed between NAG, ß2-MG, and the eGFR and blood cadmium. In this study, the association between Cd exposure and some renal function indicators was observed. This study's findings and the obtained biological samples can serve as a basis for future molecular biological research.


Asunto(s)
Cadmio , Metales Pesados , Femenino , Masculino , Humanos , Anciano , Cadmio/toxicidad , Metales Pesados/toxicidad , Creatinina , Oportunidad Relativa , Riñón/fisiología
5.
Molecules ; 28(2)2023 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-36677709

RESUMEN

Pacific oyster (Crassostrea gigas), an abundant bivalve consumed across the Pacific, is known to possess a wide range of bioactivities. While there has been some work on its bioactive hydrolysates, the discovery of bioactive peptides (BAPs) remains limited due to the resource-intensive nature of the existing discovery pipeline. To overcome this constraint, in silico-based prospecting is employed to accelerate BAP discovery. Major oyster proteins were digested virtually under a simulated gastrointestinal condition to generate virtual peptide products that were screened against existing databases for peptide bioactivities, toxicity, bitterness, stability in the intestine and in the blood, and novelty. Five peptide candidates were shortlisted showing antidiabetic, anti-inflammatory, antihypertensive, antimicrobial, and anticancer potential. By employing this approach, oyster BAPs were identified at a faster rate, with a wider applicability reach. With the growing market for peptide-based nutraceuticals, this provides an efficient workflow for candidate scouting and end-use investigation for targeted functional product preparation.


Asunto(s)
Antiinfecciosos , Crassostrea , Animales , Crassostrea/metabolismo , Péptidos/farmacología , Péptidos/metabolismo , Alimentos Marinos , Antiinfecciosos/metabolismo
6.
Mar Drugs ; 20(5)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35621960

RESUMEN

Chronic exposure to ultraviolet (UV) light promotes the breakdown of collagen in the skin and disrupts the extracellular matrix (ECM) structure, leading to skin wrinkling. Pacific whiting (Merluccius productus) is a fish abundant on the Pacific coast. In the current study, we investigated the anti-wrinkle effect of hydrolysate from Pacific whiting skin gelatin (PWG) in UVB-irradiated human dermal fibroblasts and the molecular mechanisms involved. PWG effectively restored type 1 procollagen synthesis reduced by UVB-irradiation. Also, we found that PWG inhibited collagen degradation by inhibiting MMP1 expression. Furthermore, PWG decreased cytokines TNF-α, IL-6, and IL-1ß associated with inflammatory responses and increased antioxidant enzymes, HO-1, SOD, GPx, CAT, and GSH content, a defense system against oxidative stress. In terms of molecular mechanisms, PWG increased collagen synthesis through activating the transforming growth factor ß (TGF-ß)/Smad pathway and decreased collagen degradation through inhibiting the mitogen-activated protein kinases/activator protein 1 (MAPK/AP-1) pathway. It also suppressed the inflammatory response through suppressing the nuclear factor-κB (NF-κB) pathway and increased antioxidant enzyme activity through activating the nuclear factor erythroid 2/heme oxygenase 1 (Nrf-2/HO-1) pathway. These multi-target mechanisms suggest that PWG may serve as an effective anti-photoaging material.


Asunto(s)
Fibroblastos , Gadiformes , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Colágeno Tipo I/metabolismo , Fibroblastos/fisiología , Fibroblastos/efectos de la radiación , Factor de Transcripción GATA1/metabolismo , Factor de Transcripción GATA1/farmacología , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemo Oxigenasa (Desciclizante)/farmacología , Humanos , Proteínas Quinasas Activadas por Mitógenos/metabolismo , FN-kappa B/metabolismo , Hidrolisados de Proteína/farmacología , Transducción de Señal , Piel , Envejecimiento de la Piel/fisiología , Extractos de Tejidos/uso terapéutico , Factor de Transcripción AP-1/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Rayos Ultravioleta/efectos adversos
7.
J Nutr Biochem ; 105: 108998, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35346829

RESUMEN

Overly elevated circulating non-esterified fatty acids (NEFAs) is an emerging health concern of obesity-associated energy disorders. However, methods to reduce circulating NEFAs remain elusive. The present study determined the effect of piceatannol, a naturally occurring stilbene, on adipocyte lipolysis and its underlying mechanism. Differentiated 3T3-L1 adipocytes, brown adipocytes and isolated white adipose tissue were treated with various concentrations of piceatannol for 1.5-h both in the basal and stimulated lipolysis conditions. Piceatannol significantly inhibited NEFAs and glycerol release with a concomitant reduction of ATGL, CGI-58 and PLIN1 expression in adipocytes. Using a series of inhibitor assays, piceatannol-induced degradation of these proteins was found to be mediated by upregulation of the autophagy-lysosome pathway. Moreover, we demonstrated that piceatannol is capable of stimulating autophagy in vitro. Importantly, piceatannol administration tended to lower fasting-induced serum glycerol levels in healthy mice. Furthermore, piceatannol administration lowered lipolysis, central adiposity and hyperinsulinemia in diet-induced obese mice. Our study provides profound evidence of a novel inhibitory role of piceatannol in lipolysis through autophagy-lysosome-dependent degradation of the key lipolytic proteins in adipocytes. This study offers a mechanistic foundation for investigating the potential of piceatannol-containing foods in reducing lipolysis and its associated metabolic disorders.


Asunto(s)
Lipólisis , Estilbenos , Células 3T3-L1 , Adipocitos , Animales , Autofagia , Ácidos Grasos no Esterificados/farmacología , Glicerol/metabolismo , Glicerol/farmacología , Lipólisis/fisiología , Lisosomas/metabolismo , Ratones , Estilbenos/metabolismo , Estilbenos/farmacología
8.
Ann Occup Environ Med ; 33: e10, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34754471

RESUMEN

BACKGROUND: We evaluated the level and factors of heavy metal exposure to children residing in the Togttsetsii, Khanbogd, and Bayandalai soums of South Gobi province, Mongolia. METHODS: A total of 118 children aged 9-12 years were surveyed, and the level of heavy metal exposure in their bodies was investigated. Exposure was investigated by measuring concentrations of heavy metals such as cadmium, lead, and mercury in the blood; mercury concentration in the hair; and total arsenic in the urine. RESULTS: Blood cadmium concentration had geometric averages of 0.16 µg/L in the children from Bayandalai, 0.15 µg/L Tsogttsetsii, and 0.16 µg/L Khanbogd. Blood lead concentration showed a relatively higher geometric average of 7.42 µg/dL in the children from Bayandalai compared to 4.78 µg/dL and 5.15 µg/dL in those from Tsogttsetsii and Khanbogd, respectively. While blood mercury concentration was the highest in the children from Bayandalai, with a value of 0.38 µg/L, those from Tsogttsetsii and Khanbogd had similar concentrations of 0.29 µg/L and 0.29 µg/L, respectively. Hair mercury concentration was the highest in the children from Bayandalai, with a value of 78 µg/g, a particularly significant difference, with a concentration of 0.50 µg/g in those from Khanbogd. Urine arsenic concentration was the highest in the children from Khanbogd, with a value of 36.93 µg/L; it was 26.11 µg/L in those from Bayandalai and 23.89 µg/L in those from Tsogttsetsii. CONCLUSIONS: The high blood lead concentration of children in Bayandalai was judged to be due to other factors in addition to mine exposure; the reason why blood and hair mercury concentration was higher in children from Bayandalai may have been due to exposure to many small-scale gold mines in the area. In the case of Khanbogd, it was estimated that the high arsenic level in urine was caused by the effect of mines.

9.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072134

RESUMEN

The interest in utilizing food-derived compounds therapeutically has been rising. With the growing prevalence of systematic chronic inflammation (SCI), efforts to find treatments that do not result in the side effects of current anti-inflammatory drugs are underway. Bioactive peptides (BAPs) are a particularly promising class of compounds for the treatment of SCI, and the abundance of high-quality seafood processing byproducts (SPB) makes it a favorable material to derive anti-inflammatory BAPs. Recent research into the structural properties of anti-inflammatory BAPs has found a few key tendencies including they tend to be short and of low molecular weight (LMW), have an overall positive charge, contain hydrophobic amino acids (AAs), and be rich in radical scavenging AAs. SPB-derived anti-inflammatory BAPs have been observed to work via inhibition of the NF-κB and MAPK pathways by disrupting the phosphorylation of IκBα and one or more kinases (ERK, JNK, and p38), respectively. Radical scavenging capacity has also been shown to play a significant role in the efficacy of SPB-derived anti-inflammatory BAPs. To determine if SPB-derived BAPs can serve as an effective treatment for SCI it will be important to understand their properties and mechanisms of action, and this review highlights such findings in recent research.


Asunto(s)
Antiinflamatorios/farmacología , Péptidos/química , Aminoácidos/química , Animales , Antiinflamatorios no Esteroideos/farmacología , Antioxidantes/farmacología , Daño del ADN , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Peces , Interacciones Hidrofóbicas e Hidrofílicas , Inflamación , MAP Quinasa Quinasa 4/metabolismo , Macrófagos/metabolismo , Peso Molecular , Inhibidor NF-kappaB alfa/metabolismo , Estrés Oxidativo , Reproducibilidad de los Resultados , Mariscos , Proteínas de Mariscos , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
10.
Molecules ; 26(7)2021 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-33916797

RESUMEN

Tuna backbone peptide (TBP) has been reported to exert potent inhibitory activity against lipid peroxidation in vitro. Since this bears relevant physiological implications, this study was undertaken to assess the impact of peptide modifications on its bioactivity and other therapeutic potential using in vitro and in silico approach. Some TBP analogs, despite lower purity than the parent peptide, exerted promising antioxidant activities in vitro demonstrated by ABTS radical scavenging assay and cellular antioxidant activity assay. In silico digestion of the peptides resulted in the generation of antioxidant, angiotensin-converting enzyme (ACE), and dipeptidyl peptidase-IV (DPPIV) inhibitory dipeptides. Using bioinformatics platforms, we found five stable TBP analogs that hold therapeutic potential with their predicted multifunctionality, stability, non-toxicity, and low bitterness intensity. This work shows how screening and prospecting for bioactive peptides can be improved with the use of in vitro and in silico approaches.


Asunto(s)
Simulación por Computador , Péptidos/uso terapéutico , Atún/metabolismo , Secuencia de Aminoácidos , Animales , Antioxidantes/farmacología , Hidrólisis , Péptidos/química , Estabilidad Proteica
11.
Curr Dev Nutr ; 4(5): nzaa072, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32467865

RESUMEN

BACKGROUND: Sea vegetables are rich sources of nutrients as well as bioactive components that are linked to metabolic health improvement. Algal polysaccharides improve satiety and modulate gut microbiota while proteins, peptides, and phenolic fractions exert anti-inflammatory, antioxidant, and antidiabetic effects. OBJECTIVE: We tested the hypothesis that dietary supplementation with either Pacific dulse (Palmaria mollis, red algae) or wakame (Undaria pinnatifida, brown algae) could remediate metabolic complications in high-fat diet-induced obesity. METHODS: Individually caged C57BL/6J mice (n = 8) were fed ad libitum with either a low-fat diet (LFD), 10% kcal fat; high-fat diet (HFD), 60% kcal fat; HFD + 5% (wt:wt) dulse (HFD + D); or HFD + 5% (wt:wt) wakame (HFD + W) for 8 weeks. Food intake and weight gain were monitored weekly. Glucose tolerance, hepatic lipids, fecal lipids, and plasma markers were evaluated, and the gut microbiome composition was assessed. RESULTS: Despite the tendency of higher food and caloric intake than the HFD (P = 0.04) group, the HFD + D group mice did not exhibit higher body weight, indicating lower food and caloric efficiency (P < 0.001). Sea vegetable supplementation reduced plasma monocyte chemotactic protein (MCP-1) (P < 0.001) and increased fecal lipid excretion (P < 0.001). Gut microbiome analysis showed that the HFD + D group had higher alpha-diversity than the HFD or LFD group, whereas beta-diversity analyses indicated that sea vegetable-supplemented HFD-fed mice (HFD + D and HFD + W groups) developed microbiome compositions more similar to those of the LFD-fed mice than those of the HFD-fed mice. CONCLUSION: Sea vegetable supplementation showed protective effects against obesity-associated metabolic complications in C57BL/6J male mice by increasing lipid excretion, reducing systemic inflammatory marker, and mitigating gut microbiome alteration. While the obese phenotype development was not prevented, metabolic issues related to lipid absorption, inflammation, and gut microbial balance were improved, showing therapeutic promise and warranting eventual mechanistic elucidations.

12.
Exp Dermatol ; 27(5): 449-452, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-28453925

RESUMEN

The soy isoflavone daidzein is bioconverted to 7,8,4'-trihydroxyisoflavone (7,8,4'-THIF) by microorganisms. Here, we investigated the matrix metalloproteinase (MMP)-1 inhibitory properties of 7,8,4'-THIF that arise through the suppression of UVB-induced MMP-1 expression. 7,8,4'-THIF reduced UVB-induced MMP-1 expression at the transcriptional level in primary human dermal fibroblasts and inhibited UVB-induced transcriptional activity of AP-1, a major activator of MMP-1 expression. Additionally, it was observed that the mitogen-activated protein kinase (MAPK) pathway, a crucial signalling cascade for MMP-1 expression, was suppressed by 7,8,4'-THIF. Protein kinase C iota (PKCι) was suspected to be a direct target of 7,8,4'-THIF. The direct interaction between 7,8,4'-THIF and PKCι was confirmed using pull-down assays and immobilized metal ion affinity-based fluorescence polarization assays. Finally, we observed that 7,8,4'-THIF inhibited UVB-induced MMP-1 expression in a human skin equivalent model. Taken together, these results suggest that 7,8,4'-THIF, a bioconversion product of daidzein, suppresses UVB-induced MMP-1 expression.


Asunto(s)
Isoenzimas/antagonistas & inhibidores , Isoflavonas/farmacología , Metaloproteinasa 1 de la Matriz/metabolismo , Proteína Quinasa C/antagonistas & inhibidores , Evaluación Preclínica de Medicamentos , Humanos , Envejecimiento de la Piel/efectos de los fármacos , Rayos Ultravioleta
13.
FASEB J ; 32(4): 2292-2304, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29242277

RESUMEN

Obesity-mediated inflammation is a major cause of insulin resistance, and macrophages play an important role in this process. The 78-kDa glucose-regulated protein (GRP78) is a major endoplasmic reticulum chaperone that modulates unfolded protein response (UPR), and mice with GRP78 heterozygosity were resistant to diet-induced obesity. Here, we show that mice with macrophage-selective ablation of GRP78 (Lyz- GRP78-/-) are protected from skeletal muscle insulin resistance without changes in obesity compared with wild-type mice after 9 wk of high-fat diet. GRP78-deficient macrophages demonstrated adapted UPR with up-regulation of activating transcription factor (ATF)-4 and M2-polarization markers. Diet-induced adipose tissue inflammation was reduced, and bone marrow-derived macrophages from Lyz- GRP78-/- mice demonstrated a selective increase in IL-6 expression. Serum IL-13 levels were elevated by >4-fold in Lyz- GRP78-/- mice, and IL-6 stimulated the myocyte expression of IL-13 and IL-13 receptor. Lastly, recombinant IL-13 acutely increased glucose metabolism in Lyz- GRP78-/- mice. Taken together, our data indicate that GRP78 deficiency activates UPR by increasing ATF-4, and promotes M2-polarization of macrophages with a selective increase in IL-6 secretion. Macrophage-derived IL-6 stimulates the myocyte expression of IL-13 and regulates muscle glucose metabolism in a paracrine manner. Thus, our findings identify a novel crosstalk between macrophages and skeletal muscle in the modulation of obesity-mediated insulin resistance.-Kim, J. H., Lee, E., Friedline, R. H., Suk, S., Jung, D. Y., Dagdeviren, S., Hu, X., Inashima, K., Noh, H. L., Kwon, J. Y., Nambu, A., Huh, J. R., Han, M. S., Davis, R. J., Lee, A. S., Lee, K. W., Kim, J. K. Endoplasmic reticulum chaperone GRP78 regulates macrophage function and insulin resistance in diet-induced obesity.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Resistencia a la Insulina , Macrófagos/metabolismo , Obesidad/metabolismo , Factor de Transcripción Activador 4/metabolismo , Animales , Línea Celular , Células Cultivadas , Dieta Alta en Grasa/efectos adversos , Chaperón BiP del Retículo Endoplásmico , Glucosa/metabolismo , Proteínas de Choque Térmico/genética , Interleucina-13/genética , Interleucina-13/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Macrófagos/citología , Masculino , Ratones , Ratones Endogámicos C57BL , Células Musculares/metabolismo , Obesidad/etiología , Respuesta de Proteína Desplegada
14.
Mol Nutr Food Res ; 61(10)2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28556482

RESUMEN

SCOPE: Ginger exerts protective effects on obesity and its complications. Our objectives here are to identify bioactive compounds that inhibit adipogenesis and lipid accumulation in vitro, elucidate the anti-obesity effect of gingerenone A (GA) in diet-induced obesity (DIO), and investigate whether GA affects adipose tissue inflammation (ATI). METHODS AND RESULTS: Oil red O staining showed that GA had the most potent inhibitory effect on adipogenesis and lipid accumulation in 3T3-L1 cells among ginger components tested at a single concentration (40 µM). Consistent with in vitro data, GA attenuates DIO by reducing fat mass in mice. This was accompanied by a modulation of fatty acid metabolism via activation of AMP-activated protein kinase (AMPK) in vitro and in vivo. Additionally, GA suppressed ATI by inhibiting macrophage recruitment and downregulating pro-inflammatory cytokines. CONCLUSION: These results suggest that GA may be used as a potential therapeutic candidate for the treatment of obesity and its complications by suppressing adipose expansion and inflammation.


Asunto(s)
Fármacos Antiobesidad/farmacología , Diarilheptanoides/farmacología , Inflamación/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Polifenoles/farmacología , Zingiber officinale/química , Células 3T3-L1 , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Adipocitos/citología , Adipocitos/efectos de los fármacos , Adipogénesis/efectos de los fármacos , Adiposidad/efectos de los fármacos , Animales , Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Colesterol/sangre , Técnicas de Cocultivo , Dieta Alta en Grasa , Ácidos Grasos no Esterificados/sangre , Regulación de la Expresión Génica , Metabolismo de los Lípidos/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos C57BL , Células RAW 264.7 , Triglicéridos/sangre
15.
Crit Rev Food Sci Nutr ; 57(8): 1631-1637, 2017 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-26114360

RESUMEN

Whereas green tea has historically been consumed in high quantities in Northeast Asia, its popularity is also increasing in many Western countries. Green tea is an abundant source of plant polyphenols exhibiting numerous effects that are potentially beneficial for human health. Accumulating evidence suggests that green tea polyphenols confer protective effects on the skin against ultraviolet (UV) irradiation-induced acceleration of skin aging, involving antimelanogenic, antiwrinkle, antioxidant, and anti-inflammatory effects as well as prevention of immunosuppression. Melanin pigmentation in the skin is a major defense mechanism against UV irradiation, but pigmentation abnormalities such as melasma, freckles, senile lentigines, and other forms of melanin hyperpigmentation can also cause serious health and aesthetic issues. Furthermore, UV irradiation initiates the degradation of fibrillar collagen and elastic fibers, promoting the process of skin aging through deep wrinkle formation and loss of tissue elasticity. UV irradiation-induced formation of free radicals also contributes to accelerated photoaging. Additionally, immunosuppression caused by UV irradiation plays an important role in photoaging and skin carcinogenesis. In this review, we summarize the current literature regarding the antimelanogenic, antiwrinkle, antioxidant, and immunosuppression preventive mechanisms of green tea polyphenols that have been demonstrated to protect against UV irradiation-stimulated skin photoaging, and gauge the quality of evidence supporting the need for clinical studies using green tea polyphenols as anti-photoaging agents in novel cosmeceuticals.


Asunto(s)
Antioxidantes/farmacología , Polifenoles/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Té/química , Humanos , Tolerancia Inmunológica , Envejecimiento de la Piel/efectos de la radiación , Rayos Ultravioleta/efectos adversos
16.
Food Chem ; 216: 19-26, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27596387

RESUMEN

Cacao beans from Theobroma cacao are an abundant source of polyphenols, particularly flavonoids. Previous studies demonstrated that cacao flavanols decrease pro-inflammatory cytokines resulting in the alleviation of allergic symptoms. We sought to investigate the effects of cacao extract (CE) on Dermatophagoides farinae extract (DFE)-induced atopic dermatitis (AD)-like symptoms. CE attenuated DFE-induced AD-like symptoms as assessed by skin lesion analyses, dermatitis score, and skin thickness. Histopathological analysis revealed that CE suppressed DFE-induced immune cell infiltration into the skin. These observations occurred concomitantly with the downregulation of inflammatory markers including serum immunoglobulin (Ig) E, chemokine; thymus and activation-regulated chemokine and macrophage-derived chemokine as well as the skin-derived cytokines interleukin (IL)-4, IL-5, and interferon-γ. CE also significantly alleviated transepidermal water loss and increased skin hydration. These results suggest that CE, a natural phytochemical-rich food, has potential therapeutic efficacy for the treatment of AD.


Asunto(s)
Cacao/química , Dermatitis Atópica/tratamiento farmacológico , Dermatophagoides farinae , Extractos Vegetales/farmacología , Alérgenos/inmunología , Alérgenos/toxicidad , Animales , Dermatitis Atópica/etiología , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Inmunoglobulina E/sangre , Inmunoglobulina E/inmunología , Inflamación/tratamiento farmacológico , Interferón gamma/sangre , Interferón gamma/inmunología , Interleucina-4/sangre , Interleucina-4/inmunología , Interleucina-5/sangre , Interleucina-5/inmunología , Masculino , Mastocitos/efectos de los fármacos , Mastocitos/metabolismo , Ratones , Ratones Endogámicos , Fitoquímicos/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Piel/efectos de los fármacos
17.
FASEB J ; 31(2): 701-710, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27811060

RESUMEN

Altered energy balance and insulin resistance are important characteristics of aging. Skeletal muscle is a major site of glucose disposal, and the role of aging-associated inflammation in skeletal muscle insulin resistance remains unclear. To investigate, we examined glucose metabolism in 18-mo-old transgenic mice with muscle-specific overexpression of IL-10 (MIL10) and in wild-type mice during hyperinsulinemic-euglycemic clamping. Despite similar fat mass and energy balance, MIL10 mice were protected from aging-associated insulin resistance with significant increases in glucose infusion rates, whole-body glucose turnover, and skeletal muscle glucose uptake (∼60%; P < 0.05), as compared to age-matched WT mice. This protective effect was associated with decreased muscle inflammation, but no changes in adipose tissue inflammation in aging MIL10 mice. These results demonstrate the importance of skeletal muscle inflammation in aging-mediated insulin resistance, and our findings further implicate a potential therapeutic role of anti-inflammatory cytokine in the treatment of aging-mediated insulin resistance.-Dagdeviren, S., Jung, D. Y., Friedline, R. H., Noh, H. L., Kim, J. H., Patel, P. R., Tsitsilianos, N., Inashima, K., Tran, D. A., Hu, X., Loubato, M. M., Craige, S. M., Kwon, J. Y., Lee, K. W., Kim, J. K. IL-10 prevents aging-associated inflammation and insulin resistance in skeletal muscle.


Asunto(s)
Envejecimiento/fisiología , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Interleucina-10/metabolismo , Músculo Esquelético/metabolismo , Animales , Forma MM de la Creatina-Quinasa , Metabolismo Energético , Interleucina-10/genética , Masculino , Ratones , Ratones Transgénicos
18.
Mol Cell Biol ; 36(23): 2956-2966, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27644327

RESUMEN

Skeletal muscle insulin resistance is a major characteristic of obesity and type 2 diabetes. Although obesity-mediated inflammation is causally associated with insulin resistance, the underlying mechanism is unclear. Here, we examined the effects of chronic obesity in mice with muscle-specific overexpression of interleukin-10 (MIL10). After 16 weeks of a high-fat diet (HFD), MIL10 mice became markedly obese but showed improved insulin action compared to that of wild-type mice, which was largely due to increased glucose metabolism and reduced inflammation in skeletal muscle. Since leptin regulates inflammation, the beneficial effects of interleukin-10 (IL-10) were further examined in leptin-deficient ob/ob mice. Muscle-specific overexpression of IL-10 in ob/ob mice (MCK-IL10ob/ob) did not affect spontaneous obesity, but MCK-IL10ob/ob mice showed increased glucose turnover compared to that in ob/ob mice. Last, mice with muscle-specific ablation of IL-10 receptor (M-IL10R-/-) were generated to determine whether IL-10 signaling in skeletal muscle is involved in IL-10 effects on glucose metabolism. After an HFD, M-IL10R-/- mice developed insulin resistance with reduced glucose metabolism compared to that in wild-type mice. Overall, these results demonstrate IL-10 effects to attenuate obesity-mediated inflammation and improve insulin sensitivity in skeletal muscle, and our findings implicate a potential therapeutic role of anti-inflammatory cytokines in treating insulin resistance and type 2 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/inmunología , Resistencia a la Insulina , Interleucina-10/genética , Leptina/genética , Músculo Esquelético/inmunología , Animales , Células Cultivadas , Diabetes Mellitus Tipo 2/inducido químicamente , Diabetes Mellitus Tipo 2/genética , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Técnicas de Inactivación de Genes , Glucosa/metabolismo , Ratones , Obesidad , Receptores de Interleucina-10/genética , Receptores de Interleucina-10/metabolismo , Transducción de Señal
19.
Oncotarget ; 7(41): 67223-67234, 2016 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-27579534

RESUMEN

Nutrient deprivation strategies have been proposed as an adjuvant therapy for cancer cells due to their increased metabolic demand. We examined the specific inhibitory effects of amino acid deprivation on the metastatic phenotypes of the human triple-negative breast cancer (TNBC) cell lines MDA-MB-231 and Hs 578T, as well as the orthotopic 4T1 mouse TNBC tumor model. Among the 10 essential amino acids tested, methionine deprivation elicited the strongest inhibitory effects on the migration and invasion of these cancer cells. Methionine deprivation reduced the phosphorylation of focal adhesion kinase, as well as the activity and mRNA expression of matrix metalloproteinases MMP-2 and MMP-9, two major markers of metastasis, while increasing the mRNA expression of tissue inhibitor of metalloproteinase 1 in MDA-MB-231 cells. Furthermore, methionine restriction downregulated the metastasis-related factor urokinase plasminogen activatior and upregulated plasminogen activator inhibitor 1 mRNA expression. Animals on the methionine-deprived diet showed lower lung metastasis rates compared to mice on the control diet. Taken together, these results suggest that methionine restriction could provide a potential nutritional strategy for more effective cancer therapy.


Asunto(s)
Metionina/deficiencia , Neoplasias de la Mama Triple Negativas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Animales , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Invasividad Neoplásica/patología
20.
Int J Mol Sci ; 16(9): 21021-34, 2015 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-26404252

RESUMEN

Atopic dermatitis (AD) is a chronic and inflammatory skin disease that can place a significant burden on quality of life for patients. AD most frequently appears under the age of six and although its prevalence is increasing worldwide, therapeutic treatment options are limited. Chlorella vulgaris (CV) is a species of the freshwater green algae genus chlorella, and has been reported to modulate allergy-inducible factors when ingested. Here, we examined the effect of CV supplementation on AD-like symptoms in NC/Nga mice. CV was orally administrated for six weeks while AD-like symptoms were induced via topical application of Dermatophagoides farinae extract (DFE). CV treatment reduced dermatitis scores, epidermal thickness, and skin hydration. Histological analysis also revealed that CV treatment reduced DFE-induced eosinophil and mast cell infiltration into the skin, while analysis of serum chemokine levels indicated that CV treatment downregulated thymus- and activation-regulated chemokine (TARC) and macrophage-derived chemokine (MDC) levels. In addition, CV treatment downregulated mRNA expression levels of IL-4 and IFN-γ. Taken together, these results suggest that CV extract may have potential as a nutraceutical ingredient for the prevention of AD.


Asunto(s)
Chlorella vulgaris/química , Dermatitis Atópica/tratamiento farmacológico , Dermatophagoides farinae/patogenicidad , Suplementos Dietéticos/microbiología , Inmunosupresores/administración & dosificación , Animales , Quimiocinas/sangre , Dermatitis Atópica/inmunología , Dermatitis Atópica/parasitología , Modelos Animales de Enfermedad , Esquema de Medicación , Eosinófilos/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Masculino , Mastocitos/efectos de los fármacos , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...